ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.E. MEDICAL ELECTRONICS REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM OPEN DELECTIVES (Offered by Other Branches) SEMESTER V OPEN ELECTIVE - I

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	OCE551	Air Pollution and Control Engineering	OE	3	3	0	0	3
2.	OBT552	Basics of Bioinformatics	OE	3	3	0	0	3
3.	OIT552	Cloud Computing	OE	3	3	0	0	3
4.	OEC551	Control Systems Engineering	OE	3	3	0	0	3
5.	OIT551	Database Management Systems	OE	3	3	0	0	3
6.	OTL552	Digital Audio Engineering	OE	3	3	0	0	3
7.	OME551	Energy Conservation and Management	OE	3	3	0	0	3
8.	OBT553	Fundamentals of Nutrition	OE	3	3	0	0	3
9.	OCE552	Geographic Information System	OE	3	3	0	0	3
10.	OPY551	Herbal Technology	OE	3	3	0	0	3
11.	OCH551	Industrial Nanotechnology	OE	3	3	0	0	3
12.	OML552	Microscopy	OE	3	3	0	0	3
13.	OBT554	Principles of Food Preservation	OE	3	3	0	0	3
14.	OMF551	Product Design and Development	OE	3	3	0	0	3
15.	ORO551	Renewable Energy Sources	OE	3	3	0	0	3
16.	OEI552	SCADA System and Applications Management	OE	3	3	0	0	3
17.	OCS551	Software Engineering	OE	3	3	0	0	3
18.	OTL551	Space Time Wireless Communication	OE	3	3	0	0	3
19.	OTL553	Telecommunication Network Management	OE	3	3	0	0	3
20.	OTL554	Wavelets and Its Applications	OE	3	3	0	0	3
21.	OIM551	World Class Manufacturing	OE	3	3	0	0	3
22.	OBT551	Introduction to Bioenergy and Biofuels	OE	3	3	0	0	3

SEMESTER VII

OPEN ELECTIVE - II

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	OAI751	Agricultural Finance, Banking and Co-operation	OE	3	3	0	0	3
2.	OBT751	Analytical Methods and Instrumentation	OE	3	3	0	0	3
3.	OGI751	Climate Change and its Impact	OE	3	3	0	0	3
4.	OPY751	Clinical Trials	OE	3	3	0	0	3
5.	OCS751	Data Structures and Algorithms	OE	3	3	0	0	3
6.	OME751	Design of Experiments	OE	3	3	0	0	3
7.	OML752	Electronics Materials	OE	3	3	0	0	3
8.	OCH752	Energy Technology	OE	3	3	0	0	3
9.	OCE751	Environmental and Social Impact Assessment	OE	3	3	0	0	3
10.	OEN751	Green Building Design	OE	3	3	0	0	3
11.	OCS752	Introduction to C Programming	OE	3	3	0	0	3
12.	OBT753	Introduction to Cell Biology	OE	3	3	0	0	3
13.	OMF751	Lean Six Sigma	OE	3	3	0	0	3
14.	OAN751	Low Cost Automation	OE	3	3	0	0	3
15.	OBT752	Microbiology	OE	3	3	0	0	3
16.	OEC755	Photonic Networks	OE	3	3	0	0	3
17.	OCH751	Process Modeling and Simulation	OE	3	3	0	0	3
18.	OPY752	Regulatory requirements in Pharmaceutical Industries	OE	3	3	0	0	3
19.	OME752	Supply Chain Management	OE	3	3	0	0	3
20.	OTL751	Telecommunication System Modeling and Simulation	OE	3	3	0	0	3
21.	OCY751	Waste Water Treatment	OE	3	3	0	0	3
22.	OIC751	Transducers Engineering	OE	3	3	0	0	3

OCE551 AIR POLLUTION AND CONTROL ENGINEERING

OBJECTIVE:

• To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

Factors affecting Selection of Control Equipment – Gas Particle Interaction – Working principle - Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators.

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

Factors affecting Selection of Control Equipment – Working principle - absorption, Adsorption, condensation, Incineration, Bio filters – Process control and Monitoring.

UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

11

10

7

6

LTPC 3 0 0 3

REFERENCES:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", Tata Mcgraw Hill Publishing Company limited.2007.
- 5. C.S.Rao, "Environmental Pollution Control Engineering", New Age International(P) Limited Publishers, 2006.

OBT552	BASICS OF BIOINFORMATICS	LTPC

BIOLOGICAL DATA ACQUISITION UNIT I

The form of biological information. Retrieval methods for DNA sequence, protein sequence and protein structure information

DATABASES

Format and Annotation: Conventions for database indexing and specification of search terms, Common sequence file formats. Annotated sequence databases - primary sequence databases, protein sequence and structure databases, Organism specific databases

UNIT III DATA PROCESSING

Data - Access, Retrieval and Submission: Standard search engines; Data retrieval tools -Entrez, DBGET and SRS; Submission of (new and revised) data; Sequence Similarity Searches: Localversus global. Distance metrics. Similarity and homology. Scoring matrices.

UNIT IV **METHODS OF ANALYSIS**

Dynamic programming algorithms, Needleman-wunsch and Smith-waterman. Heuristic Methods of sequence alignment, FASTA, and PSI BLAST. Multiple Sequence Alignment and software tools for pairwise and multiple sequence alignment;

UNIT V APPLICATIONS

Genome Annotation and Gene Prediction; ORF finding; Phylogenetic Analysis : Comparative genomics, orthologs, paralogs. Genome analysis - Genome annotation

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Introduction to Bioinformatics by Arthur K. Lesk, Oxford University Press.
- 2. Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press.
- 3. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by Durbin, S.Eddy, A.Krogh, G.Mitchison.
- 4. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press.
- 5. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O'Reilley Media

9

3 0 0 3

9

9

9

REFERENCE

OIT552

OBJECTIVES:

1. Bioinformatics The Machine Learning Approach by Pierre Baldi and Soren Brunak.

UNIT I INTRODUCTION TO CLOUD COMPUTING

9 Introduction to Cloud Computing - Roots of Cloud Computing - Desired Features of Cloud Computing – Challenges and Risks – Benefits and Disadvantages of Cloud Computing.

UNIT II VIRTUALIZATION

Introduction to Virtualization Technology – Load Balancing and Virtualization – Understanding Hypervisor – Seven Layers of Virtualization – Types of Virtualization – Server, Desktop, Application Virtualization.

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

NIST Cloud Computing Reference Architecture - Public, Private and Hybrid Clouds - laaS -PaaS – SaaS – Architectural Design Challenges – Cloud Storage.

UNIT IV **RESOURCE MANAGEMENT AND SECURITY IN CLOUD**

Inter Cloud Resource Management - Resource Provisioning Methods - Security Overview -Cloud Security Challenges – Data Security – Application Security – Virtual Machine Security.

UNIT V CASE STUDIES

Google App Engine(GAE) - GAE Architecture - Functional Modules of GAE - Amazon Web Services(AWS) - GAE Applications - Cloud Software Environments - Eucalyptus - Open Nebula – Open Stack. **TOTAL: 45 PERIODS**

OUTCOMES:

On Completion of the course, the students should be able to:

- Articulate the main concepts, key technologies, strengths and limitations of cloud • computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

CLOUD COMPUTING

- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

q

LTPC 3003

9

Q

TEXT BOOKS:

- 1. Buyya R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011.
- 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017.

REFERENCES:

- 1. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, "Mastering Cloud Computing", Tata Mcgraw Hill, 2013.
- 2. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing A Practical Approach", Tata Mcgraw Hill, 2009.
- 3. George Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud: Transactional Systems for EC2 and Beyond (Theory in Practice)", O'Reilly, 2009.

OEC551	CONTROL SYSTEMS ENGINEERING	L	т	Ρ	С
		3	0	0	3
OB JECTIVES:					

• To introduce the components and their representation of control systems

• To learn various methods for analyzing the time response, frequency response and stability of the systems.

Q

9

9

9

• To learn the various approach for the state variable analysis.

UNIT I SYSTEMS COMPONENTS AND THEIR REPRESENTATION

Control System: Terminology and Basic Structure-Feed forward and Feedback control theory-Electrical and Mechanical Transfer Function Models-Block diagram Models-Signal flow graphs models-DC and AC servo Systems-Synchros -Multivariable control system

UNIT II TIME REPONSE ANALYSIS

Transient response-steady state response-Measures of performance of the standard first order and second order system-effect on an additional zero and an additional pole-steady error constant and system- type number-PID control-Analytical design for PD,PI,PID control systems

UNIT III FREQUENCY RESPONSE AND SYSTEM ANALYSIS

Closed loop frequency response-Performance specification in frequency domain-Frequency response of standard second order system- Bode Plot - Polar Plot- Nyquist plots-Design of compensators using Bode plots-Cascade lead compensation-Cascade lag compensation-Cascade lag-lead compensation

UNIT IV CONCEPTS OF STABILITY ANALYSIS

Concept of stability-Bounded - Input Bounded - Output stability-Routh stability criterion-Relative stability-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.

UNIT V CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS

9

State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to state variable models-Solution of state equations-Concepts of Controllability and Observability-Stability of linear systems-Equivalence between transfer function and state variable representations-State variable analysis of digital control system-Digital control design using state feedback.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Identify the various control system components and their representations.
- Analyze the various time domain parameters.
- Analysis the various frequency response plots and its system.
- Apply the concepts of various system stability criterions.
- Design various transfer functions of digital control system using state variable models.

TEXT BOOK:

1. M.Gopal, "Control System – Principles and Design", Tata McGraw Hill, 4th Edition, 2012.

REFERENCES

- 1. J.Nagrath and M.Gopal, "Control System Engineering", New Age International Publishers, 5 th Edition, 2007.
- 2. K. Ogata, 'Modern Control Engineering', 5th edition, PHI, 2012.
- 3. S.K.Bhattacharya, Control System Engineering, 3rd Edition, Pearson, 2013.
- 4. Benjamin.C.Kuo, "Automatic control systems", Prentice Hall of India, 7th Edition, 1995.

OIT551

DATABASE MANAGEMENT SYSTEMS

L T PC 3 0 0 3

9

OBJECTIVES

- To learn the fundamentals of data models
- To learn conceptual modeling using ER diagrams.
- To study SQL queries and database programming
- To learn proper designing of relational database.
- To understand database security concepts
- To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING

Purpose of Database System – Data independence - Data Models – Database System Architecture – Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction to relational databases – Relational Model – Keys – ER-to-Relational Mapping. Modeling of a library management system.

UNIT II DATABASE QUERYING

Relational Algebra - SQL: fundamentals - DDL - Specifying integrity constraints - DML - Basic retrieval queries in SQL - Complex SQL retrieval queries - nested queries - correlated queries - joins - aggregate functions. Creating a table, populating data, adding integrity constraints, querying tables with simple and complex queries.

DATABASE PROGRAMMING

Database programming with function calls, stored procedures - views - triggers. Embedded SQL. ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM, implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN

Functional Dependencies - Design guidelines - Normal Forms: first, second, third -Boyce/Codd Normal Form - Normalization algorithms. Design of a banking database system / university database system.

UNIT V ADVANCED TOPICS

Database security issues - Discretionary access control - role based access - Encryption and public key infrastructures - challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- Understand relational data model, evolve conceptual model of a given problem, its mapping to relational model and Normalization
- Query the relational database and write programs with database connectivity
- Understand the concepts of database security and information retrieval systems

TEXT BOOKS:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson, 2011.
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

REFERENCES:

- 1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. Raghu Ramakrishnan, —Database Management SystemsII, Fourth Edition, McGraw-Hill College Publications, 2015.

OTL552

DIGITAL AUDIO ENGINEERING

LTPC 3 0 0 3

OBJECTIVES:

- To understand the concept of fundamentals of digital audio.
- To understand the concept of audio in digital TV broadcasting.
- To understand the various codes of digital coding.
- To understand the concept of digital audio tape recorder.
- To analyze the concept internet audio in digital audio engineering.

11

9

9

UNIT I FUNDAMENTALS OF DIGITAL AUDIO

Discrete time sampling - sampling theorem - Nyquist frequency – aliasing – prevention – quantization – signal to error ratio – distortion – other architectures – dithers – types of dither.

UNIT II RECORDING AND TRANSMISSION PRINCIPLES

PCM – record processing – recording oriented codes – transmission oriented codes – audio in digital TV broadcasting – DAB.

UNIT III DIGITAL CODING & COMPRESSION

Block & convolutional codes – cyclic codes – Reed Solomon codes – interleaving – compression principles – lossless & perceptive coding – subband codes – transform coding – compression formats – MPEG audio – Dolby AC 3 – ATRAC.

UNIT IV DIGITAL AUDIO TECHNIQUES

Digital audio tape recorder – cassettes – modes – track format – digital audio editing – editing with random access media & recording media – editor structure – digital audio in optical disks – CD, MD, DVD, playing optical disk – Minidisk.

UNIT V APPLICATIONS OF DIGITAL AUDIO

Internet audio – MP3 – SDMI – audio MPEG 4 – PC – MIDI – sound cards.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, students would be able to

- Analyze the type of dither.
- Analyze the recording and transmission principles in digital audio.
- Analyze the various compression techniques.
- Design and analyze the digital audio editing.
- Analyze the various application of digital audio.

TEXT BOOKS:

John Watkinson, "An Introduction to Digital Audio", Focal Press, Second edition. 2013
 Ken C Pohlmann, "Principles of Digital audio", McGraw Hill, Sixth edition, 2010

REFERENCES:

1. Then Ballin, "Handbook for sound Engineers Taylor & Francis", Fifth edition, 2015

2. John Watkinson, "The art of Digital Audio" Focal Press, Third edition, 2013

OME551 ENERGY CONSERVATION AND MANAGEMENT L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- Understand and analyse the energy data of industries
- Carryout energy accounting and balancing
- Conduct energy audit and suggest methodologies for energy savings and
- Utilise the available resources in optimal ways

9

9

9

9

UNIT I INTRODUCTION

Energy - Power – Past & Present scenario of World; National Energy consumption Data – Environmental aspects associated with energy utilization – Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets

UNIT V ECONOMICS

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

OUTCOMES:

Upon completion of this course, the students can able to analyse the energy data of industries.

- Can carryout energy accounting and balancing
- Can suggest methodologies for energy savings

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com,a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden. I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987.

TOTAL: 45 PERIODS

9

q

9

9

OBT553

FUNDAMENTALS OF NUTRITION

LTPC 3003

OBJECTIVES:

- The course aims to develop the knowledge of students in the basic area of Food Chemistry.
- This is necessary for effective understanding of food processing and technology subjects. •
- This course will enable students to appreciate the similarities and complexities of the chemical components in foods.

UNIT I **OVERVIEW OF NUTRITION**

Definition, six classes of nutrients, calculating energy values from food, using the RDA, nutritional status, nutritional requirement, malnutrition, nutritional assessment of individuals and populations, dietary recommendations, Balanced diet planning: Diet planning principles, dietary guidelines; food groups, exchange lists, personal diet analysis;

UNIT II DIGESTION

Digestion, Absorption and Transport: Anatomy and physiology of the digestive tract, mechanical and chemical digestion, absorption of nutrients.

UNIT III **CARBOHYDRATES**

Glycemic and Non-glycemic carbohydrates, blood glucose regulation, recommendations of sugar intake for health, health effects of fiber and starch intake, Artificial sweeteners; Importance of blood sugar regulation, Dietary recommendations for NIDDM and IDDM

UNIT IV **PROTEINS & LIPIDS**

Proteins; Food enzymes; Texturized proteins; Food sources, functional role and uses in foods. Review of structure, composition & nomenclature of fats. Non-glyceride components in fats & oils; Fat replacements; Food sources, functional role and uses in foods. Health effects and recommended intakes of lipids. Recommended intakes of proteins, Deficiency- short term and long term effects.

METABOLISM, ENERGY BALANCE AND BODY COMPOSITION UNIT V

Energy Balance; body weight and body composition; health implications; obesity, BMR and BMI calculations; Weight Control: Fat cell development; hunger, satiety and satiation; dangers of unsafe weight loss schemes; treatment of obesity; attitudes and behaviours toward weight control. Food and Pharmaceutical grades; toxicities, deficiencies, factors affecting bioavailability, Stability under food processing conditions.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Chopra, H.K. and P.S. Panesar. "Food Chemistry". Narosa, 2010.
- 2. Vaclavik, V. A. and Christian E. W. "Essentials of Food Science". II Edition, Kluwer-Academic, Springer, 2003.
- 3. Mann. Jim and Stewart Truswell "Essentials of Human Nutrition". 3rd Edition. Oxford University Press, 2007.
- 4. Gibney, Michael J., et al., "Introduction to Human Nutrition". 2nd Edition. Blackwell,2009.
- 5. Gropper, Sareen S. and Jack L.Smith "Advanced Nutrition and Human Metabolism". 5th Edition. Wadsworth Publishing, 2008.

9

9

9

9

REFERENCES:

- 1. Gopalan C., B.V. Rama Sastri, and S.C. Balasubramanian S. C. "Nutritive Value of Indian Foods". NIN, ICMR, 2004.
- 2. Damodaran, S., K.L. Parkin and O.R. Fennema. "Fennema's Food Chemistry". 4th Edition, CRC Press, 2008
- 3. Belitz, H.-D, Grosch W and Schieberle P. "Food Chemistry", 3rd Rev. Edition, Springer-Verlag, 2004.
- 4. Walstra, P. " Physical Chemistry of Foods". Marcel Dekker Inc. 2003.
- 5. Owusu-Apenten, Richard. "Introduction to Food Chemistry". CRC Press, 2005

OCE552 GEOGRAPHIC INFORMATION SYSTEM

OBJECTIVES:

- To introduce the fundamentals and components of Geographic Information System
- To provide details of spatial data structures and input, management and output processes.

FUNDAMENTALS OF GIS UNIT I

Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

Database Structures - Relational, Object Oriented - ER diagram - spatial data models -Raster Data Structures - Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID data models - OGC standards - Data Quality.

DATA INPUT AND TOPOLOGY UNIT III

Scanner - Raster Data Input - Raster Data File Formats - Vector Data Input - Digitiser -Topology - Adjacency, connectivity and containment - Topological Consistency rules -Attribute Data linking – ODBC – GPS - Concept GPS based mapping.

UNIT IV DATA ANALYSIS

Vector Data Analysis tools - Data Analysis tools - Network Analysis - Digital Education models -3D data collection and utilisation.

UNIT V **APPLICATIONS**

OUTCOME:

GIS Applicant - Natural Resource Management - Engineering - Navigation - Vehicle tracking and fleet management - Marketing and Business applications - Case studies.

TOTAL: 45 PERIODS

This course equips the student to

- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output

9

9

LTPC 3003

q

9

TEXT BOOKS:

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE:

1. Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

OPY551

HERBAL TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES:

- To acquire the basic knowledge of Indian system of medicines.
- To enable the students to know about the plant tissue culture techniques and learn about the instruments used in the extraction, isolation, purification and identification of herbal drugs.

UNIT I INDIAN SYSTEMS OF MEDICINE

Introduction, basic principles and treatment modalities of Ayurveda – Unani – Homeopathy – Siddha –naturopathy- Introduction and streams of Yoga. Classification of herbs - Harvesting – Post harvesting – Conditions of storage.-seasonal and geographical variation.

UNIT II In-vitro CULTURE OF MEDICINAL PLANTS

Requirements – Setting up a tissue culture lab – Basic laboratory procedure – Processing of plant tissue culture – Growth profile – Growth measurement – Plant tissue culture methods – Callus culture – Types of tissue culture – Tissue culture of medicinal plants – Applications of plant tissue culture.

UNIT III PHYTO PHARMACEUTICALS

Traditional and modern extraction techniques: Successive solvent extraction- Super critical fluid extraction – Steam distillation – Head space techniques – Sepbox –General extraction process: Carbohydrates – Proteins – Alkaloids –Glycosides. Isolation and purification of phytochemicals (Eg. Quinine from cinchona, vincristine from Vinca, sennoside from senna, Euginol from clove oil.)

UNIT IV SCREENING METHODS FOR HERBAL DRUGS

Screening methods for anti-fertility agents – Antidiabetic drugs – Anti anginal drugs – Diuretic – Analgesic activity – Antipyretic activity – Anti cancer activity – Evaluation of hepatoprotective agents – anticonvulsive- Anti ulcer drugs.

UNIT V STANDARDIZATION AND CONSERVATION OF HERBAL DRUGS

Importance of standardization - Standardization of single drugs and compound formulations – WHO guidelines for the quality assessment herbal drugs - Conservation strategies of medicinal plants – Government policies for protecting the traditional knowledge.

TOTAL: 45 PERIODS

9

Q

9

9

OUTCOMES:

The student will be able to

- Understand the basic principle, design, control and processing techniques of medicinal plants and their derivatives.
- Find a solution to problems, including social, scientific and ethical issues connected with the use of medicinal plants in the different field of applications.
- Describe the biological effects of medicinal plants with legislation and governmental policies for conserving medicinal plants.

TEXT BOOKS:

- 1. Agarwal, S.S. & Paridhavi, M., "Herbal Drug Technology" Universities Press, Pvt Limited, 2007.
- 2. Wallis, T.E., "Textbook of Pharmacognosy" 5th Edition, CBS Publishers and Distributors, 2005.
- 3. Indian System of Medicine and Homeopathy, Planning and Evaluation Cell, Govt.of India, New Delhi, 2001.
- 4. Yoga- The Science of Holistic Living by V.K.Yoga, VKY Prakashna Publishing, Bangalore, 2005.
- 5. Quality Control Methods for medicinal plant material, WHO Geneva, 1998.

REFERENCES:

- 1. Evans, W.C., "Trease and Evans Pharmacognosy" 15th Edition, Elsevier HealthSciences, 2001.
- 2. Pulok K. Mukherjee., "Quality control of Herbal Drugs" Reprintedn, Business Horizons, New Delhi, 2012.
- 3. Daniel, M., "Herbal Technology: Concepts and Advances" Satish Serial PublishingHouse, 2008.

OCH551

INDUSTRIAL NANOTECHNOLOGY

LT PC 3 0 0 3

OBJECTIVES

- To elucidate on advantages of nanotechnology based applications in each industry
- To provide instances of contemporary industrial applications of nanotechnology
- To provide an overview of future technological advancements and increasing role of nanotechnology in each industry

UNIT I NANO ELECTRONICS

Advantages of nano electrical and electronic devices –Electronic circuit chips – Lasers - Micro and NanoElectromechanical systems – Sensors, Actuators, Optical switches,- Data memory – Lighting and Displays – Batteries - Fuel cells and Photo-voltaic cells – Electric double layer capacitors – Lead-free solder – Nanoparticle coatings for electrical products

UNIT II BIONANOTECHNOLOGY

Nanoparticles in bone substitutes and dentistry – Implants and Prosthesis – Nanorobotics in Surgery –Nanosensors in Diagnosis– Neuro-electronic Interfaces– Therapeutic applications

9

NANOTECHNOLOGY IN CHEMICAL INDUSTRY

Nanocatalyts - Smart materials - Heterogenous nanostructures and composites Nanostructures for Molecular recognition (Quantum dots, Nanorods, Nanotubes) - Molecular Encapsulation and its applications - Nanoporous zeolites - Self-assembled Nanoreactors

UNIT IV NANOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY

Nanotechnology in Agriculture -Precision farming, Smart delivery system - Insecticides using nanotechnology - Potential of nano-fertilizers - Nanotechnology in Food industry

UNIT V NANOTECHNOLOGY IN TEXTILES AND COSMETICS

Nanofibre production - Electrospinning - Controlling morphologies of nanofibers - Tissue engineering application- Polymer nanofibers - Nylon-6 nanocomposites from polymerization -Nano-filled polypropylene fibers - Nano finishing in textiles (UV resistant, antibacterial, hydrophilic, self-cleaning, flame retardant finishes) - Modern textiles Cosmetics - Formulation of Gels, Shampoos, Hair-conditioners

REFERENCES:

- 1. Neelina H. Malsch (Ed.), Biomedical Nanotechnology, CRC Press (2005)
- 2. Udo H. Brinker, Jean-Luc Mieusset (Eds.), Molecular Encapsulation: Organic Reactions in Constrained Systems, Wiley Publishers (2010).
- 3. Jennifer Kuzma and Peter VerHage, Nanotechnology in agriculture and food production, Woodrow Wilson International Center, (2006).
- 4. Lynn J. Frewer, Willehm Norde, R. H. Fischer and W. H. Kampers, Nanotechnology in the Agri-food sector, Wiley-VCH Verlag, (2011).
- 5. P. J. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead Publishing Limited, Cambridge, (2007).
- 6. Y-W. Mai, Polymer Nano composites, Woodhead publishing, (2006).
- 7. W.N. Chang, Nanofibres fabrication, performance and applications, Nova Science Publishers Inc. (2009)

OML552

MICROSCOPY

OBJECTIVE:

This course will cover the basic principles and techniques of optical and electron microscopy. This course also deals with the sample preparation techniques for the microstructural analysis.

UNIT I INTRODUCTION

History of Microscopy, Overview of current microscopy techniques. Light as particles and waves, Fundamental of optics: Diffraction and interference in image formation, real and virtual images, Resolution, Depth of field and focus, Magnification, Numerical aperture, Aberration of lenses. Components of Light Microscopy, Compound light microscopy and its variations.

UNIT II MICROSCOPY

Phase contrast microscopy: optical design, theory, image interpretation, Dark-field microscopy: optical design, theory, image interpretation, Polarization Microscopy: Polarized light, optical design, theory, image interpretation, Differential Interference Contrast (DIC): equipment and optics, image interpretation, Modulation contrast microscopy: contrast methods using oblique illumination.

3 0 0 3

LT PC

TOTAL: 45 PERIODS

9

g

9

9

UNIT III ELECTRON MICROSCOPY

Interaction of electrons with matter, elastic and inelastic scattering, secondary effects, Components of electron microscopy: Electron sources, pumps and holders, lenses, apertures, and resolution. Scanning Electron and Transmission Electron Microscopy: Principle, construction, applications and limitations.

UNIT IV SAMPLE PREPARATION FOR MICROSTRUCTURAL ANALYSIS

Optical Microscopy sample preparation: Grinding, polishing and etching, SEM sample preparation: size constrains, TEM sample preparation: Disk preparation, electro polishing, ion milling, lithography, storing specimens.

UNIT V CHEMICAL ANALYSIS

Surface chemical composition (Principle and applications) - Mass spectroscopy and X-ray emission spectroscopy - Energy Dispersive Spectroscopy- Wave Dispersive Spectroscopy. Electron spectroscopy for chemical analysis (ESCA), Ultraviolet Photo Electron Spectroscopy (UPS), X ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES)-Applications.

TOTAL: 45 PERIODS

OUTCOMES:

- Able to understand the physics behind the microscopy.
- Ability to describe the principle, construction and working of light microscopy.
- Ability to appreciate about electron microscopy.
- Ability to understand about the important of sample preparation technique.
- Ability to identify the appropriate spectroscopy technique for chemical analysis.

TEXT BOOKS:

- 1. Douglas B. Murphy, Fundamentals of light microscopy and electronic imaging, 2001, Wiley-Liss, Inc. USA
- 2. David B. Williams and C. Barry Carter, Transmission Electron Microscopy-A Textbook for Materials Science, Springer US, 2nd edition, 2009.

REFERENCES:

- 1. Brandon D. G, "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.
- 2. Whan R E (Ed), ASM Handbook, Volume 10, Materials Characterisation", Nineth Edition, ASM international, USA, 1986.
- 3. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996

OBT554

PRINCIPLES OF FOOD PRESERVATION

L T P C 3 0 0 3

OBJECTIVES:

 The course aims to introduce the students to the area of Food Preservation. This is necessary for effective understanding of a detailed study of food processing and technology subjects.

9

9

UNIT I FOOD PRESERVATION AND ITS IMPORTANCE

Introduction to food preservation. Wastage of processed foods; Shelf life of food products; Types of food based on its perishability. Traditional methods of preservation

UNIT II METHODS OF FOOD HANDLING AND STORAGE

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.retort pouch packing, Aseptic packaging.

UNIT III THERMAL METHODS

Newer methods of thermal processing; batch and continuous; In container sterilizationcanning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods

UNIT IV DRYING PROCESS FOR TYPICAL FOODS

Rate of drying for food products; design parameters of different type of dryers; properties of airwater mixtures. Psychrometric chart, freezing and cold storage.freeze concentration, dehydrofreezing, freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages.

UNIT V **NON-THERMAL METHODS**

Super Critical Technology for Preservation - Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology.

OUTCOMES: On completion of the course the students are expected to

Be aware of the different methods applied to preserving foods.

TEXT BOOKS:

- 1. Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice".Surbhi Publications, 2001.
- 3. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.
- 4. Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publications, 2005.

REFERENCES:

- 1. Rahman, M. Shafiur. "Handbook of Food Preservation". Marcel & Dekker, 2006.
- 2. Zeuthen, Peter and Bogh-Sarensen, Leif. "Food Preservation Techniques". CRC / Wood Head Publishing, 2003.
- 3. Ranganna, S. "Handbook of Canning and Aseptic Packaging". Tata McGraw-Hill, 2000.
- 4. Ranganna, S. "Handbook of Canning and Aseptic Packaging". Tata McGraw-Hill, 2000.

Q

9

TOTAL: 45 PERIODS

9

9

OMF551

L T P C 3 0 0 3

9

9

9

OBJECTIVE:

• The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

Need for IPPD – Strategic importance of Product development – integration of customer, designer, material supplier and process planner, Competitor and customer – Behaviour analysis. Understanding customer – prompting customer understanding – involve customer in development and managing requirements – Organization – process management and improvement – Plan and establish product specifications.

UNIT II CONCEPT GENERATION AND SELECTION

Task – Structured approaches – clarification – search – externally and internally – explore systematically – reflect on the solutions and processes – concept selection – methodology – benefits.

UNIT III PRODUCT ARCHITECTURE

Implications – Product change – variety – component standardization – product performance – manufacturability – product development management – establishing the architecture – creation – clustering – geometric layout development – fundamental and incidental interactions – related system level design issues – secondary systems – architecture of the chunks – creating detailed interface specifications.

UNIT IV INDUSTRIAL DESIGN

Integrate process design – Managing costs – Robust design – Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically – Need for industrial design – impact – design process – investigation of for industrial design – impact – design process – investigation of customer needs – conceptualization – refinement – management of the industrial design process – technology driven products – user – driven products – assessing the quality of industrial design.

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs – Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes – Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL: 45 PERIODS

OUTCOME:

• The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

1. Kari T.Ulrich and Steven D.Eppinger, "Product Design and Development", McGraw-Hill International Edns. 1999.

9

REFERENCES:

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.
- 3. Staurt Pugh, "Tool Design –Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, New york, NY.

ORO551

RENEWABLE ENERGY SOURCES

OBJECTIVES:

- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources.

UNIT I **PRINCIPLES OF SOLAR RADIATION**

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

SOLAR ENERGY COLLECTION UNIT II

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS

Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applicationssolar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation and economic aspects.

UNIT V **GEOTHERMAL ENERGY**:

Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

TOTAL: 45 PERIODS

8

7

10

9

10

LTPC 3003

OUTCOMES:

- Understanding the physics of solar radiation.
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects.
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TEXT BOOKS:

1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publishers, 2011

2. Twidell & Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011

REFERENCES:

- 1. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2007
- 2. Ramesh R & Kumar K.U, "Renewable Energy Technologies", Narosa Publishing House, 2004
- 3. Mittal K M , "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2003
- 4. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010

OEI552 SCADA SYSTEM AND APPLICATIONS MANAGEMENT L T P C

COURSE OBJECTIVE:

- To understand about the SCADA system components and SCADA communication protocols
- To provide knowledge about SCADA applications in power system

UNIT I INTRODUCTION TO SCADA

Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits

UNIT II SCADA SYSTEM COMPONENTS

Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels

UNIT III SCADA COMMUNICATION

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

9

9

3003

UNIT IV SCADA MONITORING AND CONTROL

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

UNIT V SCADA APPLICATIONS IN POWER SYSTEM

Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning.

CASE STUDIES:

SCADA Design for 66/11KV and 132/66/11KV or 132/66 KV any utility Substation and IEC 61850 based SCADA Implementation issues in utility Substations,

TOTAL: 45 PERIODS

OUTCOME:

• This course gives knowledge about various system components and communication protocols of SCADA system and its applications.

REFERENCES:

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford, UK,2004
- 3. William T. Shaw, Cybersecurity for SCADA systems, PennWell Books, 2006
- 4. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
- 5. Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power, PennWell 1999
- 6. Dieter K. Hammer, Lonnie R. Welch, Dieter K. Hammer, "Engineering of Distributed Control Systems", Nova Science Publishers, USA, 1st Edition, 2001

OCS551

SOFTWARE ENGINEERING

L T P C 3 0 0 3

q

OBJECTIVES:

- To understand the phases in a software development project
- To learn project management concepts
- To understand the concepts of requirements analysis and modeling.
- To understand software design methodologies
- To learn various testing methodologies
- To be familiar with issues related to software maintenance

UNIT I SOFTWARE PROCESS

Introduction to Software Engineering, scope – software crisis – principles of software engineering - Software process – Life cycle models – Traditional and Agile Models - Team organization.

9

UNIT II PLANNING AND ESTIMATION

Planning and the software process – cost estimation: LOC, FP Based Estimation, COCOMO I & II Models – Duration estimation and tracking – Gantt chart - Software Project Management – plan – risk analysis and management.

UNIT III REQUIREMENTS ANALYSIS AND SPECIFICATION

Software Requirements: Functional and Non-Functional, Software Requirements specification– Structured system Analysis – modeling: UML based tools, DFD - Requirement Engineering Process.

UNIT IV SOFTWARE DESIGN AND IMPLEMENTATION

Design process – Design principles and guidelines – design techniques – coupling and cohesion - metrics – tools. Implementation: choice of programming language, programming practices – coding standards – code walkthroughs and inspections.

UNIT V TESTING AND MAINTENANCE

Software testing fundamentals- Testing techniques: white box, black box, glass box testing - unit testing - integration testing - system testing - acceptance testing - debugging. Post-delivery maintenance: Types - objectives - metrics - Reverse Engineering.

At the end of this course, the students will be able to

- Understand different software life cycle models.
- Perform software requirements analysis
- Apply systematic methodologies for software design and deployment.
- Understand various testing approaches and maintenance related issues.
- Plan project schedule, and estimate project cost and effort required.

TEXT BOOKS:

OUTCOMES:

- 1. Roger S. Pressman, "Software Engineering A Practitioner"s Approach", Seventh Edition, Mc Graw-Hill International Edition, 2010.
- 2. Ian Sommerville, "Software Engineering", 9th Edition, Pearson Education Asia, 2011.

REFERENCES:

- 1. Rajib Mall, "Fundamentals of Software Engineering", Third Edition, PHI Learning PrivateLimited, 2009.
- 2. Pankaj Jalote, "Software Engineering, A Precise Approach", Wiley India, 2010.
- 3. Kelkar S.A., "Software Engineering", Prentice Hall of India Pvt Ltd, 2007.
- 4. Stephen R.Schach, "Software Engineering", Tata McGraw-Hill Publishing Company Limited, 2007.
- 5. <u>http://nptel.ac.in/</u>.

TOTAL: 45 PERIODS

9

9

9

OTL551

SPACE TIME WIRELESS COMMUNICATION

LTPC 3003

9

9

9

a

OBJECTIVES:

- To understand the concept of multiple antenna propagation.
- To understand the concept of capacity of frequency flat deterministic MIMO channel.
- To understand the concept of transmitter and receiver diversity technique.
- To design the coding for frequency flat channel.
- To analyze the concept of micro multi user detection.

UNIT I MULTIPLE ANTENNA PROPAGATION AND ST CHANNEL CHARACTERIZATION

Wireless channel – Scattering model in macrocells – Channel as a ST random field – Scattering functions, Polarization and field diverse channels – Antenna array topology – Degenerate channels – reciprocity and its implications – Channel definitions – Physical scattering model – Extended channel model – Channel measurements – sampled signal model – ST multiuser and ST interference channels – ST channel estimation.

UNIT II CAPACITY OF MULTIPLE ANTENNA CHANNELS

Capacity of frequency flat deterministic MIMO channel: Channel unknown to the transmitter – Channel known to the transmitter – capacity of random MIMO channels – Influence of ricean fading – fading correlation – XPD and degeneracy on MIMO capacity – Capacity of frequency selective MIMO channels.

UNIT III SPATIAL DIVERSITY

Diversity gain – Receive antenna diversity – Transmit antenna diversity – Diversity order and channel variability – Diversity performance in extended channels – Combined space and path diversity – Indirect transmit diversity – Diversity of a space-time – frequency selective fading channel.

UNIT IV MULTIPLE ANTENNA CODING AND RECEIVERS

Coding and interleaving architecture – ST coding for frequency flat channels – ST coding for frequency selective channels – Receivers–SISO–SIMO–MIMO–Iterative MIMO receivers – Exploiting channel knowledge at the transmitter: linear pre-filtering – optimal pre-filtering for maximum rate – optimal pre-filtering for error rate minimization – selection at the transmitter – Exploiting imperfect channel knowledge

UNIT V ST OFDM, SPREAD SPECTRUM AND MIMO MULTIUSER DETECTION 9

SISO-OFDM modulation, MIMO-OFDM modulation – Signaling and receivers for MIMO– OFDM – SISO–SS modulation – MIMO-SS modulation – Signaling and receivers for MIMO – S.MIMO – MAC – MIMO – BC – Outage performance for MIMO-MU – MIMO - MU with OFDM – CDMA and multiple antennas.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course , students would be able to

- Design and analyze the channel characterization.
- Analyze the capacity of random MIMO channel.
- Design and analyze the order diversity and channel variability.
- Analyze the multiple antenna coding and receivers.
- Analyze the MIMO multi user detection

TEXT BOOKS:

- 1. Sergio Verdu, "Multi User Detection", Cambridge University Press, 2011
- 2. A. Paulraj, Rohit Nabar, Dhananjay Gore, "Introduction to Space Time Wireless Communication Systems", Cambridge University Press, 2008

REFERENCES:

1. Don Tarrieri, "Principles of Spread Spectrum Communication systems", Springer, Third edition, 2015

OTL553 TELECOMMUNICATION NETWORK MANAGEMENT L T P C

3003

q

9

9

9

9

OBJECTIVES:

- To understand the concept of network management standards.
- To design the common management information service element model.
- To understand the various concept of information modelling.
- To analyze the concept of SNMPv1 and SNMPv2 protocol.
- To analyze the concept of examples of network management.

UNIT I FOUNDATIONS

Network management standards-network management model- organization modelinformation model abstract syntax notation 1 (ASN.1) – encoding structure- macros-functional model. Network management application functional requirements:Configuration managementfault management-performance management-Error correlation technology- security management-accounting management- common management-report management- polity based management-service level management-management service-community definitionscapturing the requirements- simple and formal approaches-semi formal and formal notations.

UNIT II COMMON MANAGEMENT INFORMATION SERVICE ELEMENT

CMISE model-service definitions-errors-scooping and filtering features- synchronizationfunctional units- association services- common management information protocol specification.

UNIT III INFORMATION MODELING FOR TMN

Rationale for information modeling-management information model-object oriented modeling paradigm- structure of management information-managed object class definition-management information base.

UNIT IV SIMPLE NETWORK MANAGEMENT PROTOCOL

SNMPv1: managed networks–SNMP models– organization model–information model–SNMPv2 communication model–functional model–major changes in SNMPv2–structure of management information, MIB–SNMPv2 protocol– compatibility with SNMPv1– SNMPv3– architecture– applications–MIB security, remote monitoring–SMI and MIB– RMQN1 and RMON2.

UNIT V NETWORK MANAGEMENT EXAMPLES

ATM integrated local management interface–ATM MIB–M1– M2–M3– M4– interfaces–ATM digital exchange interface management–digita1 subscriber loop and asymmetric DSL technologies–ADSL configuration management–performance management Network management tools: Network statistics management–network management system– management platform case studies: OPENVIEW–ALMAP.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, students would be able to

- Design and analyze of fault management.
- Analyze the common management information protocol specifications.
- Design and analyze of management information model.
- Design the simple network management protocol.
- Design the various types of network management tools.

TEXT BOOKS:

- 1. Mani Subramanian, "Network Management: Principles and Practice" Pearson Education, Second edition, 2010
- 2. Lakshmi G Raman, "Fundamentals of Telecommunications Network Management", Wiley, 1999

REFERENCES:

- 1. Henry Haojin Wang, "Telecommunication Network Management", Mc- Graw Hill ,1999
- 2. Salah Aidarous & Thomas Plevyak, "Telecommunication Network Management: Technologies and Implementations", Wiley, 1997

OTL554

WAVELETS AND ITS APPLICATIONS

LTPC 3 0 0 3

OBJECTIVES:

- To understand the concept of Fourier transform and short time Fourier transform.
- To understand the concept of continuous time wavelet transform,
- To analyze the concept of interpolation and decimation.
- To understand the types of filter bank.
- To analyze the concept of image compression.

UNIT I FOURIER ANALYSIS

Fourier basis & Fourier Transform – failure of Fourier Transform – Need for Time-Frequency Analysis – Heisenberg's Uncertainty principle – Short time Fourier transform (STFT) – short comings of STFT– Need for Wavelets

UNIT II CWT AND MRA

Wavelet basis – Continuous time Wavelet Transform (CWT) – need for scaling function – Multi Resolution Analysis – important wavelets: Haar– Mexican hat– Meyer– Shannon– Daubachies.

UNIT III INTRODUCTION TO MULTIRATE SYSTEMS

Decimation and Interpolation in Time domain - Decimation and Interpolation in Frequency domain – Multi rate systems for a rational factor.

UNIT IV FILTER BANKS AND DWT

Two channel filter bank – Perfect Reconstruction (PR) condition – relationship between filter banks and wavelet basis – DWT – Filter banks for Daubachies wavelet function.

9

9

9

UNIT V APPLICATIONS

Feature extraction using wavelet coefficients– Image compression– interference suppression– Microcalification cluster detection– Edge detection–Faulty bearing signature identification.

OUTCOMES:

At the end of the course, students would be able to

- Analyze the need for time frequency analysis..
- Design the concept of multi resolution analysis.
- Analyze the multirate system for rational factor.
- Analyze the relationship between the filter bank and wavelet.
- Analyze the application of wavelet.

TEXT BOOK:

1. K.P.Soman, K.I. Ramachandran, N.G. Rasmi,"Insight Into Wavelets: From Theory to Practice" PHI Learning Private Limited, Third Edition, 2010

REFERENCE BOOKS:

- 1. Sidney Burrus C, "An Introduction to Wavelets "Academic press, 2014
- 2. Stephane G Mallat, A Wavelet Tour of Signal Processing: The sponse way" Academic Press, Third edition, 2008

OIM551	WORLD CLASS MANUFACTURING	LTPC
		3003

OBJECTIVES:

- Understanding of the concept and importance of strategy planning for manufacturing industries
- To apply principles and techniques in the identifiable formulation and implementation of manufacturing strategy for competitive in global context.

UNIT I INDUSTRIAL DECLINE AND ASCENDANCY

Manufacturing excellence - US Manufacturers - French Manufacturers - Japan decade - American decade - Global decade

UNIT II BUILDING STRENGTH THROUGH CUSTOMER – FOCUSED PRINCIPLES 9

Customer - Focused principles - General principles - Design - Operations - Human resources - Quality and Process improvement - Promotion and Marketing

UNIT III VALUE AND VALUATION

Product Costing - Motivation to improve - Value of the enterprises QUALITY - The Organization : Bulwark of stability and effectiveness - Employee stability – Quality Individuals Vs. Teams - Team stability and cohesiveness - Project cohesiveness and stability

UNIT IV STRATEGIC LINKAGES

Product decisions and customer service - Multi-company planning - Internal manufacturing planning - Soothing the demand turbulence

9

TOTAL: 45 PERIODS

9

9

UNIT V IMPEDIMENTS

Bad plant design - Mismanagement of capacity - Production Lines - Assembly Lines - Whole Plant Associates - Facilitators - Teamsmanship - Motivation and reward in the age of continuous Improvement.

OUTCOMES:

- Able to understand the concept and the importance of manufacturing strategy for industrial enterprise competitiveness.
- Apply appropriate techniques in the analysis an devaluation of company's opportunities for enhancing competitiveness in the local regional and global context.
- Identify formulation and implement strategies for manufacturing and therefore enterprise competitiveness.

TEXT BOOKS:

- 1. By Richard B. Chase, Nicholas J. Aquilano, F. Robert Jacobs "Operations Management for Competitive Advantage", McGraw-Hill Irwin, ISBN 0072323159
- 2. Moore Ran, "Making Common Sense Common Practice: Models for Manufacturing Excellence", Elsevior Multiworth
- 3. Narayanan V. K., "Managing Technology & Innovation for Competitive Advantage", Pearson Education Inc.
- 4. Korgaonkar M. G., "Just In Time Manufacturing", MacMillan Publishers India Ltd.,
- 5. Sahay B. S., Saxena K. B. C., Ashish Kumar, "World Class Manufacturing", MacMillan Publishers

OBT551 INTRODUCTION TO BIOENERGY AND BIOFUELS LTPC

OBJECTIVES

• This course will be focussed on achievement, acquisition of knowledge and enhancement of comprehension of information regarding bioenergy and biofuel technologies and their sustainable applications.

UNIT I CONCEPTS

Biopower, Bioheat, Biofuesl, advanced liquid fuels, drop-in fuels, biobased products

UNIT II FEEDSTOCKS

Harvested Feedstocks: First generation biofuels, Second generation biofuels, third generation biofuels. Residue Feedstocks: Agricultural wastes, forestry wastes, farm waste, organic components of residential, commercial, institutional and insdustrial waste.

UNIT III CONVERSION TECHNOLOGIES

Biorefinery concept – biorefineries and end products, Biochemical conversion – hydrolysis, enzyme and acid hydrolysis, fermentation, anaerobic digestion and trans-esterification, Thermochemical conversion – Combustion, Gasification, Pyrolysis, other thermochemical conversion technologies. Scaling up of emerging technologies.

9

TOTAL: 45 PERIODS

9

9

3003

UNIT IV BIOFUELS

Pros and cons of Biofuels, Algal biofuels, Cyanobacteria and producers of biofuels, Jatropha as biodiesel producer, Bioethanol, Biomethane, biohydrogen, biobutanol, metabolic engineering of fuel molecules, Engineering aspects of biofuels, Economics of biofuels

UNIT V SUSTAINABILITY & RESILIENCE

Environmental Sustainability, bioenergy sustainability, emissions of biomass to power generation applications, emissions from biofuels. ILUC issues, Carbon footprint, Advanced low carbon fuels

TEXTBOOKS:

TOTAL :45 PERIODS

- 1. Biorenewable Resources Engieering new products. Robert C Brown. Blackwell Publishing Professional, 2003.
- 2. Biofuels, Wim Soetaert and Erik Vandamme (Editors) Wiley, 2009.
- 3. Biomass for Renewable Energy, Fuels and Chemicals. Donald Klass. Academic press. 1998

REFERENCES:

- 1. Introduction to Bioenergy. Vaughn C. Nelson and Kenneth L. Starcher.
- 2. Bioenergy: Biomass to Biofuels by by Anju Dahiya
- 3. Bioenergy: Principles and Applications by Yebo Li and Samir Kumar Khanal
- 4. Bioenergy by Judy D. Wall and Caroline S. Harwood
- 5. Bioenergy: Sustainable Perspectives by Ted Weyland

OAI751 AGRICULTURAL FINANCE, BANKING AND CO-OPERATION LT PC 3003

OBJECTIVES:

- To make the students aware about the agricultural Finance, Banking and Cooperation.
- To acquaint the students with the basic concepts, principles and functions of management.
- To understand the process of finance banking and cooperation.

UNIT I **AGRICULTURAL FINANCE - NATURE AND SCOPE**

Agricultural Finance: Definition, Importance, Nature and Scope - Agricultural Credit: Meaning, Definition, Need and Classification - Sources of credit - Role of institutional and non -Institutional agencies: Advantages and Disadvantages - Rural indebtedness: consequences of rural indebtedness - History and Development of rural credit in India.

UNIT II FARM FINANCIAL ANALYSIS

Principles of Credit - 5C's, 5R's and & 7P's of Credit - Project Cycle and Management -Preparation of bankable projects / Farm credit proposals - Feasibility - Time value of money: Compounding and Discounting - Appraisal of farm credit proposals - Undiscounted and discounted measures - Repayment plans - Farm Financial Statements: Balance Sheet, Income Statement and Cash Flow statement - Financial Ratio Analysis.

Q

9

9

UNIT III FINANCIAL INSTITUTIONS

Institutional Lending Agencies - Commercial banks: Nationalization, Agricultural Development Branches - Area Approach - Priority Sector Lending - Regional Rural Banks, Lead bank, Scale of finance - Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India - Microfinance and its role in poverty alleviation - Self-Help Groups - Non -Governmental Organizations - Rural credit policies followed by State and Central Government - Subsidized farm credit, Differential Interest Rate (DIR), Kisan Credit Card (KCC) Scheme - Relief Measures and Loan Waiver Scheme and Know Your Customer (KYC).

UNIT IV CO-OPERATION

Co-operation: Philosophy and Principles - History of Indian Cooperative Credit Movement: Pre and Post-Independence periods and Cooperation in different plan periods - Cooperative credit institutions: Two tier and three tier structure, Functions: provision of short term and long term credit, Strength and weakness of cooperative credit system, Policies for revitalizing cooperative credit: Salient features of Vaithiyananthan Committee Report on revival of rural cooperative credit institutions, Reorganisation of Cooperative credit structure in Andhra Pradesh and single window system and successful cooperative credit systems in Gujarat, Maharashtra, Punjab etc, - Special cooperatives: LAMPS and FSS: Objectives, role and functions - National Cooperative Development Corporation (NCDC) and National Federation of State Cooperative Banks Ltd., (NAFSCOB) - Objectives and Functions.

UNIT V BANKING AND INSURANCE

Negotiable Instruments: Meaning, Importance and Types - Central Bank: RBI - functions - credit control - objectives and methods: CRR, SLR and Repo rate - Credit rationing - Dear money and cheap money - Financial inclusion and Exclusion: Credit widening and credit deepening monetary policies. Credit gap: Factors influencing credit gap - Non - Banking Financial Institutions (NBFI) - Assessment of crop losses, Determination of compensation - Crop insurance: Schemes, Coverage, Advantages and Limitations in implementation - Estimation of crop yields - Livestock, insurance schemes - Agricultural Insurance Company of India Ltd (AIC): Objectives and functions.

TOTAL: 45 PERIODS

OUTCOME:

After completion of this course, the students will

• Be familiar with agricultural finance, Banking, cooperation and basic concepts, principles and functions of management.

REFERENCES:

- 1. Muniraj, R., 1987, Farm Finance for Development, Oxford & IBH, New Delhi
- 2. Subba Reddy. S and P.Raghu Ram 2011, Agricultural Finance and Management, Oxford & IBH, New Delhi.
- 3. Lee W.F., M.D. Boehlje A.G., Nelson and W.G. Murray, 1998, Agricultural Finance, Kalyani Publishers, New Delhi.
- 4. Mammoria, C.B., and R.D. Saxena 1973, Cooperation in India, Kitab Mahal, Allahabad.

9

9

ANALYTICAL METHODS AND INSTRUMENTATION **OBT751**

UNIT I SPECTROMETRY

Properties of electromagnetic radiation- wave properties - components of optical instruments-Sources of radiation - wavelength selectors - sample containers - radiation transducers -Signal process and read outs - signal to noise ratio - sources of noise - Enhancement of signal to noise - types of optical instruments – Applications.

UNIT II **MOLECULAR SPECTROSCOPY**

Molecular absorption spectrometry - Measurement of Transmittance and Absorbance - Beer's law - Instrumentation - Applications - Theory of fluorescence and Phosphorescence - Theory of Infrared absorption spectrometry - IR instrumentation - Applications - Theory of Raman spectroscopy - Instrumentation - applications.

NMR AND MASS SPECTROMETRY

Theory of NMR — chemical shift- NMR-spectrometers – applications of 1H and 13C NMR-Molecular mass spectra - ion sources. Mass spectrometer. Applications of molecular mass -Electron paramagnetic resonance- g values - instrumentation.

UNIT IV SEPARATION METHODS

General description of chromatography - Band broadening and optimization of column performance- Liquid chromatography – Partition chromatography – Adsorption chromatography - Ion exchange chromatography -size exclusion chromatography- Affinity chromatographyprinciples of GC and applications - HPLC- Capillary electrophoresis - Applications.

UNIT V ELECTRO ANALYSIS AND SURFACE MICROSCOPY

Electrochemical cells- Electrode potential cell potentials - potentiometry- reference electrode - ion selective and molecular selective electrodes - Instrument for potentiometric studies -Voltametry - Cyclic and pulse voltametry- Applications of voltametry . Study of surfaces -Scanning probe microscopes – AFM and STM.

TEXT BOOKS

- 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". Cengage Learning, 2007.
- 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". VIIth Edition, CBS, 1986.
- 3. Braun, Robert D. "Introduction to Instrumental Analysis". Pharma Book Syndicate, 1987.
- 4. Ewing, G.W. "Instrumental Methods of Chemical Analysis", Vth Edition, McGraw-Hill, 1985

REFERENCES:

- 1. Sharma, B.K. "Instrumental Methods of Chemical Analysis : Analytical Chemistry" GoelPublishing House, 1972.
- 2. Haven, Mary C., etal., "Laboratory Instrumentation". IVth Edition, John Wiley, 1995.

LTPC 3 0 0 3

g

9

Q

TOTAL: 45 PERIODS

9

OGI751

OBJECTIVES:

- To understand the basics of weather and climate
- To have an insight on Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE

Shallow film of Air– stratified & disturbed atmosphere – law – atmosphere Engine. Observation of parameters: Temperature – Humidity – Wind - Pressure – precipitation-surface – networks. Constitution of atmosphere: well stirred atmosphere – process around turbopause – in dry air – ozone – carbon Dioxide – Sulphur Dioxide– Aerosol - water. Evolution of Atmosphere. State of atmosphere: Air temperature – pressure – hydrostatic – Chemistry – Distribution – circulation

UNIT II ATMOSPHERIC DYNAMICS

Atmosphere dynamics: law – isobaric heating and cooling – adiabatic lapse rates – equation of motion - solving and forecasting. Forces – Relative and absolute acceleration – Earth's rotation *coriolis* on sphere – full equation of motion – Geostrophy;- Thermal winds –departures – small-scale motion. Radiation, convection and advections: sun & solar radiation – energy balance – terrestrial radiation and the atmosphere – Green house effect- Global warming - Global budget – radiative fluxes - heat transport. Atmosphere and ocean systems convecting & advecting heat. Surface and boundary layer – smaller scale weather system – larger scale weather system.

UNIT III GLOBAL CLIMATE

Components and phenomena in the climate system: Time and space scales – interaction and parameterization problem. Gradients of Radiative forcing and energy transports by atmosphere and ocean – atmospheric circulation – latitude structure of the circulation - latitude – longitude dependence of climate features. Ocean circulation: latitude – longitude dependence of climate features – ocean vertical structure – ocean *thermohaline* circulation – land surface processes – carbon cycle.

UNIT IV CLIMATE SYSTEM PROCESSES

Conservation of motion: Force – *coriolis* - pressure gradient-velocity equations – Application – geotropic wind – pressure co-ordinates. Equation of State – atmosphere – ocean. Application: thermal circulation – sea level rise. Temperature equation: Ocean – air – Application – decay of sea surface temperature. Continuity equation: ocean – atmosphere. Application: coastal upwelling – equatorial upwelling – conservation of warm water mass. Moisture and salinity equation: conservation of mass – moisture. Source & sinks – latent heat. Moist processes – saturation – convection – Wave processes in atmosphere and ocean.

UNIT V CLIMATE CHANGE MODELS

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming – climate change observed to date.

OUTCOMES:

At the end of the course the student will be able to understand

- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

9 on

9

9

TEXTBOOKS:

- 1. Fundamentals of weather and climate (2nd Edition) Robin Moilveen (2010), Oxford University Press
- 2. Climate change and climate modeling, J. David Neelin (2011) Cambridge University press.

OPY751

CLINICAL TRIALS

OBJECTIVES:

- To highlight the epidemiologic methods, study design, protocol preparation
- To gain knowledge in the basic bio-statistical techniques involved in clinical research. •
- To describe the principles involved in ethical, legal and regulatory issues in clinical trials.

ROLE OF CLINICAL TRIALS IN NEW DRUG DEVELOPMENT UNIT I

Drug Discovery, regulatory guidance and governance, pharmaceutical manufacturing, nonclinical research, clinical trials, post-marketing surveillance, ethical conduct during clinical trials.

UNIT II FUNDAMENTALS OF TRIAL DESIGN

Randomised clinical trials, uncontrolled trials. Protocol development, endpoints, patient selection, source and control of bias, randomization, blinding, sample size and power.

UNIT III ALTERNATE TRIAL DESIGNS

Crossover design, factorial design, equivalence trials, bioequivalence trials, non-inferiority trials, cluster randomized trials, multi-center trials.

UNIT IV **BASICS OF STATISTICAL ANALYSIS**

Types of data and normal distribution, significance tests and confidence intervals, comparison of means, comparison of proportions, analysis of survival data, subgroup analysis, regression analysis, missing data.

UNIT V **REPORTING OF TRIALS**

Overview of reporting, trial profile, presenting baseline data, use of tables, figures, critical appraisal of report, meta-analysis.

TOTAL: 45 PERIODS

OUTCOMES:

The student will be able to

- Explain key concepts in the design of clinical trials.
- Describe study designs used, identify key issues in data management for clinical trials.
- Describe the roles of regulatory affairs in clinical trials.

TEXT BOOKS:

- 1. Fundamentals of Clinical Trials, Lawrence M. Friedman, Springer Science & Business Media, 2010
- 2. Textbook of Clinical Trials, David Machin, Simon Day, Sylvan Green, John Wiley & Sons. 2007
- 3. Clinical Trials: A Practical Approach, Stuart J. Pocock, John Wiley & Sons, 17-Jul-2013

Q

LTPC

3003

9

9

Q

q

REFERENCES:

- 1. Clinical trials, A practical guide to design, analysis and reporting. Duolao Wang and AmeetBakhai. Remedica. 2006.
- 2. Introduction to statistics in pharmaceutical clinical trials. T.A. Durham and J Rick Turner. Pharmaceutical Press.
- 3. Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines, Tom Brody, Academic Press, 2016.

OCS751

DATA STRUCTURES AND ALGORITHMS

LT PC 3003

OBJECTIVES:

- To understand the various algorithm design and analysis techniques
- To learn linear data structures lists, stacks, and queues •
- To learn different sorting and searching algorithms
- To understand Tree and Graph data structures

UNIT I ALGORITHM ANALYSIS, LIST ADT

Algorithms: Notation - analysis - running time calculations. Abstract Data Types (ADTs): List ADT – array-based implementation – linked list implementation – singly linked lists- applications of lists: Polynomial Manipulation. Implementation of List ADT using an array and using a linked list in C.

UNIT II STACKS AND QUEUES

Stack ADT - Applications - Evaluating arithmetic expressions- Conversion of Infix to Postfix-Recursion. Queue ADT - Priority Queue - applications of queues. Implementation of Stack ADT and palindrome checking using C. Implementation of Queue operations using arrays in C.

SEARCHING AND SORTING ALGORITHMS

Divide and conquer methodology - Searching: Linear Search - Binary Search. Sorting: Insertion sort - Merge sort - Quick sort - Heap sort. Analysis of searching and sorting techniques. Implementation of linear search, binary search, insertion sort, merge sort and quick sort algorithms in C.

UNIT IV TREES

Tree ADT - tree traversals - Binary Tree ADT - expression trees - binary search tree ADT applications of trees. Heap - applications of heap. Implementation of Binary search tree and its operations, tree traversal methods, finding height of the tree using C. Implementation of heap and heap sorting using arrays in C.

UNIT V GRAPHS

Definition - Representation of Graph - Breadth-first traversal - Depth-first traversal - Dynamic programming Technique - Warshall's and Floyd's algorithm - Greedy method - Dijkstra's algorithm – applications of graphs. Implementation of graph, graph traversal methods, finding shortest path using Dijkstra's algorithm in C

TOTAL: 45 PERIODS

10

11

7

8

OUTCOMES:

At the end of this course, the students should be able to:

- Implement linear data structures and solve problems using them.
- Implement and apply trees and graphs to solve problems.
- Implement the various searching and sorting algorithms.

TEXT BOOKS:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson Education, 1988.

REFERENCES:

- 1. Aho, Hopcroft and Ullman, "Data Structures and Algorithms", Pearson Education, 1983.
- 2. S.Sridhar, "Design and Analysis of Algorithms", First Edition, Oxford University Press. 2014
- 3. Byron Gottfried, Jitender Chhabra, "Programming with C" (Schaum's Outlines Series), Mcgraw Hill Higher Ed., III Edition, 2010
- 4. Yashvant Kanetkar, "Data Structures Through C", BPB publications, II edition, 2003

OME751

DESIGN OF EXPERIMENTS

L T P C 3 0 0 3

OBJECTIVE:

• To impart knowledge on various types of experimental designs conduct of experiments and data analysis techniques.

UNIT I FUNDAMENTALS OF EXPERIMENTAL DESIGNS

Hypothesis testing – single mean, two means, dependant/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, Analysis of variance, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, testing using Analysis of variance.

UNIT II SINGLE FACTOR EXPERIMENTS

Completely Randomized Design- effect of coding the observations- model adequacy checking- estimation of model parameters, residuals analysis- treatment comparison methods-Duncan's multiple range test, Newman-Keuel's test, Fisher's LSD test, Tukey's test- testing using contrasts- Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT III FACTORIAL DESIGNS

Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2^{κ} Design with two and three factors- Yate's Algorithm- fitting regression model- Randomized Block Factorial Design - Practical applications.

9

Q

UNIT IV SPECIAL EXPERIMENTAL DESIGN

Blocking and Confounding in 2^{K} Designs- blocking in replicated design- 2^{K} Factorial Design in two blocks- Complete and partial confounding- Confounding 2^{K} Design in four blocks-Two level Fractional Factorial Designs- one-half fraction of 2^{K} Design, design resolution, Construction of one-half fraction with highest design resolution, one-quarter fraction of 2^{K} Design

UNIT V TAGUCHI METHODS

Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments- Response Graph Method, ANOVA- attribute data analysis- Robust design-noise factors, Signal to noise ratios, Inner/outer OA design.

TOTAL: 45 PERIODS

• Able to apply experimental techniques to practical problems to improve quality of processes / products by optimizing the process / product parameters.

TEXT BOOK:

OUTCOME:

1. Krishnaiah K, and Shahabudeen P, "Applied Design of Experiments and Taguchi Methods", PHI, India, 2011.

REFERENCES:

- 1. Douglas C. Montgomery, "Design and Analysis of Experiments", John Wiley & sons, 2005
- 2. Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill, India, 2005.

OML752

ELECTRONIC MATERIALS

OBJECTIVE:

• Understanding the various materials and its properties contribution towards electrical and electronics field. This course covers the properties of materials behind the electronic applications.

UNIT I INTRODUCTION

Structure: atomic structures and bonding, types of bonding, band formation. Defects and imperfections in solids: Point, Line and Planer defects; Interfacial defects and volume defects. Classification of materials based on bonding: conductors, semiconductors and insulators.

UNIT II CONDUCTING MATERIALS

Introduction, factors affecting the conductivity of materials, classification based on conductivity of materials, temperature dependence of resistivity, Low resistivity materials (graphite, AI, Cu and steel) and its applications, high resistivity materials (manganin, constantin, nichrome, tungsten) and their applications. Superconductors: Meissner effect, classification and applications.

UNIT III SEMICONDUCTING AND MAGNETIC MATERIALS

Semiconductors: Introduction, types of semiconductors, temperature dependence of semiconductors, compound semiconductors, basic ideas of amorphous and organic semiconductors. Magnetic Materials: classification of magnetic materials, ferromagnetism-B-H curve (Qualitative), hard and soft magnetic materials, magneto materials applications.

L T P C 3 0 0 3

Q

q

9

7

UNIT IV DIELECTRIC AND INSULATING MATERIALS

Dielectric Materials: Introduction, classification, temperature dependence on polarization, properties, dielectric loss, factors influencing dielectric strength and capacitor materials, applications. Insulators: Introduction, thermal and mechanical properties required for insulators, Inorganic materials, organic materials, liquid insulators, gaseous insulators and ageing of insulators, applications.

UNIT V OPTOELECTRONIC ANDNANO ELECTRONIC MATERIALS

Optoelectronic materials. Introduction, properties, factor affecting optical properties, role of optoelectronic materials in LEDs, LASERs, photodetectors, solar cells. Nano electronic Materials: Introduction, advantage of nanoelectronic devices, materials, fabrication, challenges in Nano electronic materials.

TOTAL : 45 PERIODS

OUTCOME:

• With the basis, students will be able to have clear concepts on electronic behaviors of materials

TEXT BOOKS:

- 1. S.O. Kasap "Principles of Electronic Materials and Devices", 3rd edition, McGraw-Hill Education (India) Pvt. Ltd., 2007.
- 2. W D Callister, "Materials Science & Engineering An Introduction", Jr., John Willey & Sons, Inc, New York, 7th edition, 2007.

REFERENCES:

- 1. B.G. Streetman and S. Banerjee, Solid State Electronic Devices, 6th edition, PHI Learning, 2009.
- 2. Eugene A. Irene, Electronic Materials Science, Wiley, 2005
- 3. Wei Gao, Zhengwei Li, Nigel Sammes, An Introduction to Electronic Materials for Engineers, 2nd Edition, World Scientific Publishing Co. Pvt. Ltd., 2011

OCH752

ENERGY TECHNOLOGY

LT PC 3 0 0 3

OBJECTIVES

• Students will gain knowledge about different energy sources

UNIT I ENERGY

Introduction to energy – Global energy scene – Indian energy scene - Units of energy, conversion factors, general classification of energy, energy crisis, energy alternatives.

UNIT II CONVENTIONAL ENERGY

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

9

10

8

NON-CONVENTIONAL ENERGY

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV **BIOMASS ENERGY**

Biomass origin - Resources - Biomass estimation. Thermochemical conversion - Biological conversion, Chemical conversion – Hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.

UNIT V **ENERGY CONSERVATION**

Energy conservation - Act; Energy management importance, duties and responsibilities; Energy audit - Types methodology, reports, instruments. Benchmalcing and energy performance, material and energy balance, thermal energy management. **TOTAL: 45 PERIODS**

OUTCOMES:

• Understand conventional Energy sources, Non- conventional Energy sources, biomass sources and develop design parameters for equipment to be used in Chemical process industries. Understand energy conservation in process industries

TEXTBOOKS:

- 1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005.
- 2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984.
- 3. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008.
- 4. Energy Management, Paul W.O'Callaghan McGraw Hill, 1993

REFERENCES:

- 1. Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York.
- 2. El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.
- 3. Sukhatme. S.P., Solar Enery Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.
- 4. Handbook of Energy Audit by 7th edition Albert Thumann, P.E., C.E.M & William J Younger C.E.M, Faiment Press 2008

OCE751 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT LTPC 3 0 0 3

OBJECTIVE:

To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

9

UNIT I INTRODUCTION

Impacts of Development on Environment – Rio Principles of Sustainable Development-Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework.

UNIT II ENVIRONMENTAL ASSESSMENT

Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction.

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance

UNIT IV SOCIO ECONOMIC ASSESSMENT

Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES

EIA case studies pertaining to Infrastructure Projects – Roads and Bridges – Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants.

TOTAL: 45 PERIODS

OUTCOMES:

The students completing the course will have ability to

- Carry out scoping and screening of developmental projects for environmental and social assessments
- Explain different methodologies for environmental impact prediction and assessment
- Plan environmental impact assessments and environmental management plans
- Evaluate environmental impact assessment reports

TEXTBOOKS:

- 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi, 1995.
- Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank,1997.
- 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers, 2009.

REFERENCES:

- 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003.
- 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998.
- 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.

9

9

9

9 הוחב **OEN751**

UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS 9 Energy use, carbon emissions, water use, waste disposal; Building materials: sources, methods of production and environmental Implications. Embodied Energy in Building Materials: Transportation Energy for Building Materials; Maintenance Energy for Buildings.

GREEN BUILDING DESIGN

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

Framed Construction, Masonry Construction. Resources for Building Materials, Alternative concepts. Recycling of Industrial and Buildings Wastes. Biomass Resources for buildings.

COMFORTS IN BUILDING UNIT III

Thermal Comfort in Buildings- Issues; Heat Transfer Characteristic of Building Materials and Building Techniques. Incidence of Solar Heat on Buildings-Implications of Geographical Locations.

UNIT IV UTILITY OF SOLAR ENERGY IN BUILDINGS

Utility of Solar energy in buildings concepts of Solar Passive Cooling and Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.

UNIT V **GREEN COMPOSITES FOR BUILDINGS**

Concepts of Green Composites. Water Utilisation in Buildings, Low Energy Approaches to Water Management. Management of Solid Wastes. Management of Sullage Water and Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. K.S.Jagadish, B. U. Venkataramareddy and K. S. Nanjundarao. Alternative Building Materials and Technologies. New Age International, 2007.
- 2. Low Energy Cooling For Sustainable Buildings. John Wiley and Sons Ltd, 2009.
- 3. Sustainable Building Design Manual. Vol 1 and 2, Teri, New Delhi, 2004.

REFERENCES:

- 1. Osman Attmann Green Architecture Advanced Technologies and Materials. McGraw Hill. 2010.
- 2. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OCS752

INTRODUCTION TO C PROGRAMMING

3

OBJECTIVES

- To develop C Programs using basic programming constructs
- To develop C programs using arrays and strings
- To develop applications in C using functions and structures

g

9

LTPC

3003

9

9

ΙТ Ρ С 3 0 0

UNIT I INTRODUCTION

Structure of C program – Basics: Data Types – Constants –Variables - Keywords – Operators: Precedence and Associativity - Expressions - Input/Output statements, Assignment statements – Decision-making statements - Switch statement - Looping statements – Pre-processor directives - Compilation process – Exercise Programs: Check whether the required amount can be withdrawn based on the available amount – Menu-driven program to find the area of different shapes – Find the sum of even numbers

Text Book: Reema Thareja (Chapters 2,3)

UNIT II ARRAYS

Introduction to Arrays – One dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Traversal, Insertion, Deletion, Searching - Two dimensional arrays: Declaration – Initialization - Accessing elements – Operations: Read – Print – Sum – Transpose – Exercise Programs: Print the number of positive and negative values present in the array – Sort the numbers using bubble sort - Find whether the given is matrix is diagonal or not. Text Book: Reema Thareja (Chapters 5)

UNIT III STRINGS

Introduction to Strings - Reading and writing a string - String operations (without using built-in string functions): Length - Compare - Concatenate - Copy - Reverse - Substring - Insertion - Indexing - Deletion - Replacement - Array of strings - Introduction to Pointers - Pointer operators - Pointer arithmetic - Exercise programs: To find the frequency of a character in a string - To find the number of vowels, consonants and white spaces in a given text - Sorting the names.

Text Book: Reema Thareja (Chapters 6 & 7)

UNIT IV FUNCTIONS

Introduction to Functions – Types: User-defined and built-in functions - Function prototype -Function definition - Function call - Parameter passing: Pass by value - Pass by reference -Built-in functions (string functions) – Recursive functions – Exercise programs: Calculate the total amount of power consumed by 'n' devices (passing an array to a function) – Menu-driven program to count the numbers which are divisible by 3, 5 and by both (passing an array to a function) – Replace the punctuations from a given sentence by the space character (passing an array to a function)

Text Book: Reema Thareja (Chapters 4)

UNIT V STRUCTURES

Introduction to structures – Declaration – Initialization – Accessing the members – Nested Structures – Array of Structures – Structures and functions – Passing an entire structure – Exercise programs: Compute the age of a person using structure and functions (passing a structure to a function) – Compute the number of days an employee came late to the office by considering his arrival time for 30 days (Use array of structures and functions) Text Book: Reema Thareja (Chapters 8)

OUTCOMES

Upon completion of this course, the students will be able to

- Develop simple applications using basic constructs
- Develop applications using arrays and strings
- Develop applications using functions and structures

TOTAL:45 PERIODS

9

9

9

9

Q

TEXT BOOK

1. Reema Thareja, "Programming in C", Oxford University Press, Second Edition, 2016

REFERENCES:

- 1. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- 2. Paul Deitel and Harvey Deitel, "C How to Program", Seventh edition, Pearson Publication
- 3. Juneja, B. L and Anita Seth, "Programming in C", CENGAGE Learning India pvt. Ltd., 2011
- 4. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", First Edition, Oxford University Press, 2009

OBT753		LT PC 3 0 0 3		
AIM • To provide I	knowledge on cell structure and its function.	3003		
	L STRUCTURE tructure of organelles, extra cellular matrix and cell junctions.	9		
Nuclues, Mitochor	L ORGANELLE AND FUNCTION ndria, Lysosomes, Endoplasmic reticulum, Golgi apparatus, nembranes, ribosomes, cytosol, chloroplasts, flagella, cell wall.	9 vesicles,		
• • • • • • • • • • • • • • • • • • • •	SION , meiosis, cell cycle regulation and apoptosis.	9		
UNIT IVMACROMOLECULES9DNA, RNA and Proteins – basic units, architectural hierarchy and organisation, functions.9				
Enzymes – Struct	EYMES Ture, Mechanism of action, Factors that affect enzyme activity, Industrial setup of plant and animal origin. TOTAL : 45			
TEXT BOOKS:	TOTAL: 45	FERIODS		
 Lodish, Harvey etal., "Molecular Cell Biology", 5 th Edition, W.H.Freeman, 2005. Cooper, G.M. and R.E. Hansman "The Cell : A Molecular Approach", 4 th Edition, ASM Press, 2007. 				

3. Alberts, Bruce etal., "Molecular Biology of the Cell", 4 th Edition, Garland Science (Taylors Francis), 2002.

REFERENCES:

- 1. McDonald, F etal., "Molecular Biology of Cancer" 2nd Edition, Taylor & Francis, 2004.
- 2. King, Roger J.B. "Cancer Biology" Addison Wesley Longman, 1996.

OMF751

LEAN SIX SIGMA

OBJECTIVE:

• To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS

Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions

UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

Tools for definition – IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter – Tools for measurement – Check sheets, Histograms, Run Charts, Scatter Diagrams, Cause and effect diagram, Pareto charts, Control charts, Flow process charts, Process Capability Measurement, Tools for analysis – Process Mapping, Regression analysis, RU/CS analysis, SWOT, PESTLE, Five Whys, interrelationship diagram, overall equipment effectiveness, TRIZ innovative problem solving – Tools for improvement – Affinity diagram, Normal group technique, SMED, 5S, mistake proofing, Value stream Mapping, forced field analysis – Tools for control – Gantt chart, Activity network diagram, Radar chart, PDCA cycle, Milestone tracker diagram, Earned value management.

UNIT III SIX SIGMA METHODOLOGIES

Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN)- Six Sigma and Leadership, committed leadership - Change Acceleration Process (CAP)- Developing communication plan - Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES

Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS

Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

OUTCOME:

• The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:

- 1. Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw Hill 2003
- 2. Thomas Pyzdek, The Six Sigma Handbook, McGraw-Hill, 2000
- 3. Fred Soleimannejed , Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004

TOTAL: 45 PERIODS

9

9

9

9

- Forrest W. Breyfogle, III, James M. Cupello, Becki Meadows, Managing Six Sigma:A Practical Guide to Understanding, Assessing, and Implementing the Strategy That Yields Bottom-Line Success, John Wiley & Sons, 2000
- 5. James P. Womack, Daniel T. Jones, Lean Thinking, Free Press Business, 2003

OAN751 LOW COST AUTOMATION

OBJECTIVES

- To give basic knowledge about automation
- To understand the basic hydraulics and pneumatics systems for automation
- To understand the assembly automation

UNIT I AUTOMATION OF ASSEMBLY LINES

Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation - classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line

UNIT II AUTOMATION USING HYDRAULIC SYSTEMS

Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.

UNIT III AUTOMATION USING PNEUMATIC SYSTEMS

Pneumatic fundamentals - control elements, position and pressure sensing -logic circuits - switching circuits - fringe conditions modules and these integration - sequential circuits - cascade methods - mapping methods – step counter method - compound circuit design - combination circuit design. Pneumatic equipments - selection of components - design calculations -application - fault finding – hydro pneumatic circuits - use of microprocessors for sequencing - PLC, Low cost automation - Robotic circuits.

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS

Introduction - various sensors – transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

UNIT V ASSEMBLY AUTOMATION

Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

TOTAL: 45 PERIODS

L T P C 3 0 0 3

9

9

9

9

g

OUTCOMES:

- Upon completion of this course, the students can able to do low cost automation systems
- Students can do some assembly automation

TEXT BOOKS:

- Anthony Esposito, "Fluid Power with applications", Prentice Hall international, 2009. 1.
- Mikell P Groover, "Automation, Production System and Computer Integrated 2.
- Manufacturing", Prentice Hall Publications, 2007. 3.

REFERENCES

- 1. Kuo .B.C, "Automatic control systems", Prentice Hall India, New Delhi, 2007.
- 2. Peter Rohner, "Industrial hydraulic control", Wiley Edition, 1995.
- 3. Mujumdar.S.R, "Pneumatic System", Tata McGraw Hill 2006

OBT752

MICROBIOLOGY

LTPC 3 0 0 3

OBJECTIVE

• To introduce students to the principles of Microbiology ,to emphasize the structure and biochemical aspects of various microbes.

UNIT I INTRODUCTION TO MICROBIOLOGY

classification and nomenclature of microorganisms, microscopic examination of microorganisms: light, fluorescent, dark field, phase contrast, and electron microscopy.

UNIT II **MICROBES- STRUCTURE AND REPRODUCTION**

Structural organization and multiplication of bacteria, viruses (TMV, Hepatitis B), algae (cyanophyta, rhodophyta) and fungi (Neurospora), life history of actinomycetes (Streptomyces), yeast (Sacharomyces), mycoplasma (M. pneumoniae) and bacteriophages (T4 phage, A phage)

MICROBIAL NUTRITION, GROWTH AND METABOLISM UNIT III

Nutritional classification of microorganisms based on carbon, energy and electron sourcesDefinition of growth, balanced and unbalanced growth, growth curve and different methods to quantify bacterial growth:(counting chamber, viable count method, counting without equipment, different media used for bacterial culture (defined, complex, selective, differential, enriched) themathematics of growth-generation time, specific growth rate.

CONTROL OF MICROORGANISMS UNIT IV

Physical and chemical control of microorganisms Definition of sterilization, dry and moist heat, pasteurization, tyndalization; radiation, ultrasonication, filtration. Disinfection sanitization, antiseptics sterilants and fumigation. mode of action and resistance to antibiotics; clinically important microorganisms

UNIT V INDUSTRIAL MICROBIOLOGY

Microbes involved in preservation (Lactobacillus, bacteriocins), spoilage of food and food borne pathogens (E.coli, S.aureus, Bacillus, Clostridium). Industrial use of microbes (production of penicillin, alcohol, vitamin B-12); biogas; bioremediation(oil spillage leaching of ores by microorganisms ,pollution control); biofertilizers, biopesticides. Biosensors.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

• To provide to the students the fundamentals of Microbiology, the scope of microbiology and solve the problems in microbial infection and their control,

TEXT BOOKS:

- 1. Pelczar, M.J. "Microbiology", 5th Edition, Tata McGraw-Hill, 1993.
- 2. Prescot. Harley, Klein. "Microbiology ": McGraw-Hill Higher Education, 2008
- 3. Ananthanarayanan, R. and C.K. Jayaram Paniker, "Textbook of Microbiology",4th Edition,

Orient Longman, 1990.

OEC755	PHOTONIC NETWORKS	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To enable the student to understand the importance of the backbone infrastructure for our present and future communication needs and familiarize them with the architectures and the protocol stack in use
- To enable the student to understand the differences in the design of data plane and the control plane and the routing, switching and the resource allocation methods and the network management and protection methods in vogue
- To expose the student to the advances in networking and switching domains and the future trends

UNIT I OPTICAL SYSTEM COMPONENTS

Light Propagation in optical fibers – Loss & bandwidth, System limitations, Non Linear effects; Solitons; Optical Network Components – Couplers, Isolators & Circulators, Multiplexers & Filters, Optical Amplifiers, Switches, Wavelength Converters.

UNIT II OPTICAL NETWORK ARCHITECTURES

Introduction to Optical Networks; SONET / SDH, Metropoliton - Area Networks, Layered Architecture ; Broadcast and Select Networks – Topologies for Broadcast Networks, Media-Access Control Protocols, Wavelength Routing Architecture.

UNIT III WAVELENGTH ROUTING NETWORKS

The optical layer, Optical Network Nodes, Routing and wavelength assignment, Traffic Grooming in Optical Networks, Architectural variations- Linear Light wave networks, Logically Routed Networks.

UNIT IV PACKET SWITCHING AND ACCESS NETWORKS

Photonic Packet Switching – OTDM, Multiplexing and Demultiplexing, Synchronisation, Broadcast OTDM networks, Switch-based networks, Contention Resolution Access Network – Network Architecture overview, Optical Access Network Architectures and OTDM networks.

UNIT V NETWORK DESIGN AND MANAGEMENT

Transmission System Engineering – System model, Power penalty - transmitter, receiver, Optical amplifiers, crosstalk, dispersion, Wavelength stabilization, Overall design considerations, Control and Management – Network management functions, Configuration management, Performance management, Fault management, Optical safety, Service interface.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

At the end of the course, the student would be able to:

- Use the backbone infrastructure for our present and future communication needs
 - Analyze the architectures and the protocol stack
 - Compare the differences in the design of data plane, control plane, routing, switching, resource allocation methods, network management and protection methods in vogue

REFERENCES:

- Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", 1. Harcourt Asia Pte Ltd., Second Edition 2004.
- C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design 2. and Algorithms", Prentice Hall of India, Ist Edition, 2002.
- P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993. 3.
- 4. Biswanath Mukherjee, "Optical WDM Networks", Springer Series, 2006.

OCH751 PROCESS MODELING AND SIMULATION LT PC

OBJECTIVE:

• To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION

Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS

Degree of freedom analysis, single and network of process units, systems yielding linear and non-linear algebraic equations, flow sheeting - sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNSTEADY STATE LUMPED SYSTEMS

Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM

Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

UNIT V **UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES**

Analysis laminar flow in pipe, sedimentation, boundary layer flow, conduction, heat exchanger, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor. Empirical modeling, parameter estimation, population balance and stochastic modeling.

TOTAL: 45 PERIODS

7

3003

9

9

7

OUTCOME:

• Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

- 1. Ramirez, W.; " Computational Methods in Process Simulation ", 2nd Edn., Butterworths Publishers, New York, 2000.
- Luyben, W.L., "Process Modelling Simulation and Control ",2nd Edn, McGraw-Hill Book Co., 1990

REFERENCES:

- 1. Felder, R. M. and Rousseau, R. W., " Elementary Principles of Chemical Processes ", John Wiley, 2000.
- 2. Franks, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 1967.
- 3. Amiya K. Jana,"Process Simulation and Control Using ASPEN", 2nd Edn,PHI Learning Ltd (2012).
- 4. Amiya K. Jana,"ChemicalProcess Modelling and Computer Simulation" 2nd Edn,PHI Learning Ltd,(2012).

OPY752 REGULATORY REQUIREMENTS IN PHARMACEUTICAL INDUSTRIES L T P C 3 0 0 3

OBJECTIVE

• To acquire the knowledge of pharmaceutical industry regulations and research

UNIT I REGULATORY CONCEPTS

Quality assurance – Quality control – Practice of cGMP – Schedule M – USFDA.

UNIT II REGULATORY ASPECTS

Pharmaceuticals: Bulk drug manufacture; Personnel, Buildings and Facilities, Process Equipment, Documentation and Records, Materials Management, Production and In-Process Controls, Packaging and Identification Labelling of API's and Intermediates, Storage and distribution, – Biotechnology derived products; Principles, Personnel, Premises and equipments, Animal quarters and care, production, labelling, Lot processing records and distribution records, quality assurance and quality control.

UNIT III INTELLECTUAL PROPERTY RIGHTS

Patent system – Different types of patents – Filing process of application for patent – Infringement of patents – The patent rules 2003 as amended by the patents (amendment) rules 2016.

UNIT IV ICH GUIDELINES

Quality guidelines – Impurities in new drug substances (Q3A(R2)) – Impurities in newdrug products(Q3B(R2)) – Validation of analytical procedures text and methodology (Q2 (R1)).

UNIT V QUALITY AUDIT AND SELF INSPECTIONS

SOPs - Documentation - Loan license auditing - Common technical documentation (CTD) - Drug master file (DMF).

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

On completion of the course, the student will be able

- To be familiarise with the pharmaceutical industry manufacturing practices and regulatory aspects of pharmacy products.
- To know the process of patenting activities.
- To know the quality guidelines followed for pharmaceutical products and few of the aspects involved in document preparation for pharmaceutical product registration.

TEXT BOOKS:

- 1. C.V.SSubbrahmanyam&J.Thimmasetty, Pharmaceutical regulatory affairs, 1stEdn., vallabhPrakashan, New Delhi, 2012.
- 2. Willig, H., Tuckeman, M.M. and Hitchings, W.S., "Good Manufacturing Practices for Pharmaceuticals", 5th Edition, Marcel Dekker Drugs and the Pharmaceutical Sciences, by CRC Press, New York, 2000.
- 3. <u>N Udupa</u>, <u>Krishnamurthy Bhat</u>, A Concise Textbook of Drug Regulatory Affairs, Manipal University Press (MUP); First Edition, 2015.

REFERENCES:

- 1. Ira R. Berry, The Pharmaceutical Regulatory Process, marcel dekker Series: Drugs and the Pharmaceutical Sciences, by CRC Press, Newyork, 2004.
- 2. Mindy J. Allport-Settle, Current Good Manufacturing Practices: Pharmaceutical, Biologics, and Medical Device Regulations and Guidance Documents Concise Reference, Pharmalogika Inc., USA, 2009.
- 3. Sharma, P.P., "How to Practice GMPs", 3rd Edition, Vandana Publications, 2006.

OME752	SUPPLY CHAIN MANAGEMENT	L	Т	Ρ	С
		3	0	0	3

OBJECTIVE:

• To provide an insight on the fundamentals of supply chain networks, tools and techniques.

UNIT I INTRODUCTION

Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Supply Chain - Decision Phases in Supply Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstacles.

UNIT II SUPPLY CHAIN NETWORK DESIGN

Role of Distribution in Supply Chain – Factors influencing Distribution network design – Design options for Distribution Network Distribution Network in Practice-Role of network Design in Supply Chain – Framework for network Decisions.

UNIT III LOGISTICS IN SUPPLY CHAIN

Role of transportation in supply chain – factors affecting transportations decision – Design option for transportation network – Tailored transportation – Routing and scheduling in transportation.

s and

a

9

UNIT IV SOURCING AND COORDINATION IN SUPPLY CHAIN

Role of sourcing supply chain supplier selection assessment and contracts- Design collaboration - sourcing planning and analysis - supply chain co-ordination - Bull whip effect -Effect of lack of co-ordination in supply chain and obstacles – Building strategic partnerships and trust within a supply chain.

UNIT V SUPPLY CHAIN AND INFORMATION TECHNOLOGY

The role IT in supply chain- The supply chain IT frame work Customer Relationship Management – Internal supply chain management – supplier relationship management – future of IT in supply chain – E-Business in supply chain.

TOTAL: 45 PERIODS

OUTCOME:

• The student would understand the framework and scope of supply chain networks and functions.

TEXTBOOK:

1. Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 2010.

REFERENCES:

- 1. Jeremy F.Shapiro, "Modeling the Supply Chain", Thomson Duxbury, 2002.
- 2. Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management, PHI, 2010
- 3. David J.Bloomberg, Stephen Lemay and Joe B.Hanna, "Logistics", PHI 2002.
- 4. James B.Ayers, "Handbook of Supply Chain Management", St.Lucle press, 2000.

OTL751 TELECOMMUNICATION SYSTEM MODELING AND SIMULATION LTPC

3 0 0 3

OBJECTIVES:

- To gain knowledge in modeling of different communication systems.
- To know the techniques involved in performance estimation of telecommunication systems.
- To learn the use of random process concepts in telecommunication system simulation.
- To study the modeling methodologies of a telecommunication system.
- To study about the QAM digital radio link environment.

UNIT I SIMULATION OF RANDOM VARIABLES RANDOM PROCESS

Generation of random numbers and sequence - Gaussian and uniform random numbers Correlated random sequences - Testing of random numbers generators - Stationary and uncorrelated noise - Goodness of fit test.

MODELING OF COMMUNICATION SYSTEMS UNIT II

Radio frequency and optical sources - Analog and Digital signals - Communication channel and model - Free space channels - Multipath channel and discrete channel noise and interference.

9

Q

UNIT III ESTIMATION OF PERFORMANCE MEASURE FOR SIMULATION

Quality of estimator – Estimation of SNR – Probability density function and bit error rate – Monte Carlo method – Importance sampling method – Extreme value theory.

UNIT IV SIMULATION AND MODELING METHODOLOGY

Simulation environment – Modeling considerations – Performance evaluation techniques – Error source simulation – Validation.

UNIT V CASE STUDIES

Simulations of QAM digital radio link environment – Light wave communication link – Satellite system.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course , students would be able to

- Apply the constituents of a telecommunication systems.
- Analyze various modeling methodologies and simulation techniques.
- Estimate the performance measures of telecommunication systems.
- Apply system modeling in telecommunication.
- Demonstrate light wave communication and satellite communication systems.

TEXTBOOKS:

- 1. Jeruchim MC Balaban P Sam K Shanmugam, "Simulation of communication Systems: Modeling, Methodology and Techniques", Plenum press, New York,2002
- 2. Jerry banks & John S Carson, "Discrete Event System Simulation", Prentice Hall of India, 1996

REFERENCES:

- 1. Averill M Law, "Simulation Modeling and Analysis",McGraw-Hill Inc,2007 Geoffrey Gorden, "System Simulation",Prentice Hall of India,1992
- 2. Turin W, "Performance Analysis of Digital Communication Systems", Computer Science Press, New York, 1990

WASTE WATER TREATMENT	LTPC
	3003

OBJECTIVES

OCY751

- To make the student conversant with the water treatment methods including adsorption and oxidation process.
- To provide basic under standings about the requirements of water, its preliminary treatment.

UNIT I WATER QUALITY AND PRELIMINARY TREATMENT

Water Quality-physical- chemical and biological parameters of water- water quality requirement - potable water standards -wastewater effluent standards -water quality indices. Water purification systems in natural systems- physical processes-chemical processes and biological processes- primary, secondary and tertiary treatment-Unit operations-unit processes. Mixing, clarification - sedimentation; Types; aeration and gas transfer – coagulation and flocculation, coagulation processes - stability of colloids - destabilization of colloids- transport of colloidal particles, clariflocculation.

9

9

9

UNIT II INDUSTRIAL WATER TREATMENT

Filtration – size and shape characteristics of filtering media – sand filters hydraulics of filtration – design considerations – radial, upflow, highrate and multimedia filters, pressure filter. Water softening – lime soda, zeolite and demineralization processes – industrial water treatment for boilers.

UNIT III CONVENTIONAL TREATMENT METHODS

Taste and odour control – adsorption – activated carbon treatment – removal of color – iron and manganese removal – aeration, oxidation, ion exchange and other methods – effects of fluorides – fluoridation and defluoridation –desalination - corrosion prevention and control – factors influencing corrosion – Langelier index – corrosion control measures.

UNIT IV WASTEWATER TREATMENT

Wastewater treatment – pre and primary treatment – equalization neutralization – screening and grid removal – sedimentation – oil separation gas stripping of volatile organics – biological oxidation – lagoons and stabilization basins – aerated lagoons – activated sludge process – trickling filtration – anaerobic decomposition.

UNIT V ADSORPTION AND OXIDATION PROCESSES

Chemical process – adsorption – theory of adsorption – ion exchange process – chemical oxidation – advanced oxidation process – sludge handling and disposal – miscellaneous treatment processes.

OUTCOMES

- Will have knowledge about adsorption and oxidation process.
- Will gain idea about various methods available for water treatment.
- Will appreciate the necessity of water and acquire knowledge of preliminary treatment.

TEXTBOOKS

- 1. Metcalf and Eddy, "Wastewater Engineering", 4th ed., McGraw Hill Higher Edu., 2002.
- 2. W. Wesley Eckenfelder, Jr., "Industrial Water Pollution Control", 2nd Edn., McGraw Hill Inc., 1989.

REFERENCES

- 1. S.P. Mahajan, "Pollution control in process industries", 27th Ed. Tata McGraw Hill Publishing Company Ltd., 2012.
- 2. M. Lancaster, "Green Chemistry: An Introductory Text", 2nd edition, RSC publishing, 2010.
- 3. C.S. Rao, "Environmental Pollution Control Engineering", New Age International, 2007.

OIC751

TRANSDUCER ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:

- To understand how physical quantities are measured and how they are converted to electrical or other forms.
- To have an adequate knowledge in resistance, transducers.
- To develop the knowledge of inductance and capacitance transducers.
- To study the characteristics of Transducers.
- To impart knowledge on various types of transducers

9

9

UNIT I SCIENCE OF MEASUREMENTS AND CLASSIFICATION OF TRANSDUCERS

Units and standards – Calibration methods – Static calibration – Classification of errors :-Limiting error and probable error – Error analysis :– Statistical methods – Odds and uncertainty – Classification of transducers – Selection of transducers.

UNIT II CHARACTERISTICS OF TRANSDUCERS

Static characteristics: – Accuracy, precision, resolution, sensitivity, linearity, span and range - Dynamic characteristics: – Mathematical model of transducer – Zero, I and II order transducers - Response to impulse, step, ramp and sinusoidal inputs.

UNIT III VARIABLE RESISTANCE TRANSDUCERS

Principle of operation, construction details, characteristics and applications of potentiometer, strain gauge, resistance thermometer, Thermistor, hot-wire anemometer, piezoresistive sensor and humidity sensor.

UNIT IV VARIABLE INDUCTANCE AND VARIABLE CAPACITANCE TRANSDUCERS

Induction potentiometer – Variable reluctance transducers – EI pick up – Principle of operation, construction details, characteristics and applications of LVDT –Capacitive transducer and types – Capacitor microphone – Frequency response.

UNIT V OTHER TRANSDUCERS

Piezoelectric transducer - Hall Effect transducer - Magneto elastic sensor- Digital transducers - Smart sensors - Fibre optic sensors- Film sensors-Introduction to MEMS and Nano sensors.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to model and analyze transducers.

TEXT BOOKS:

- 1. Neubert H.K.P., Instrument Transducers An Introduction to their Performance and Design, Oxford University Press, Cambridge, 2003.
- 2. Doebelin E.O. and Manik D.N., Measurement Systems Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007.
- 3. D. Patranabis, Sensors and Transducers, 2nd edition, Prentice Hall of India, 2010. E.A.

REFERENCES:

- 1. John P. Bentley, Principles of Measurement Systems, III Edition, Pearson Education, 2000.
- 2. Murthy, D.V.S., Transducers and Instrumentation, 2nd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010.
- 3. W.Bolton, Engineering Science, Elsevier Newnes, Fifth edition, 2006.
- 4. Ramón Pallás-Areny, John G. Webster, Sensors and Signal Conditioning, Wiley-Interscience 2nd Edition, 1991.
- 5. Bela G.Liptak, Instrument Engineers' Handbook, Process Measurement and Analysis, 4th Edition, Vol. 1, ISA/CRC Press, 2003.
- 6. Ian Sinclair, Sensors and Transducers, 3rd Edition, Elsevier, 2012.

9

9

9

9

Q